
本文已收录在Github,关注我,紧跟本系列专栏文章,咱们下篇再续!
- 魔都架构师 | 全网30W技术追随者
- 大厂分布式系统/数据中台实战专家
- 主导交易系统百万级流量调优 & 车联网平台架构
- 🧠 AIGC应用开发先行者 | 区块链落地实践者
- 以技术驱动创新,我们的征途是改变世界!
- 实战干货:编程严选网
0 前言
原名 RooChat,Codelime/Cline 的一个分支,也是VS Code插件,重点是Agent,可深度对话、分析需求、规划任务,甚至扮演不同技术角色。https://roocode.com/
1 内置cosplay
可让 AI 扮演不同角色,如“架构师”、“测试工程师”等。特别是“架构师”角色,能站在更高维度与你一同分c’s析项目结构、梳理需求、设计方案,甚至绘制 Mermaid 流程图或架构图。类似Cursor “Thinking” 模式,但角色专业性和交互深度,RooCode 更丰富。
2 灵活的模型配置
需用户自行配置 AI 模型。对于追求性价比的用户,可通过配置 OpenRouter、LM Studio 等模型供应商,选择其中的免费或者本地大模型,如 OpenAI 的 openai/gpt-oss-120b,实现零成本使用:
若追求顶尖代码能力,如公认的Claude4,也可考虑接入一些国内的第三方模型 API 平台。这些平台通常价格比官方 API 更实惠,但需自行承担服务不稳定、甚至跑路风险,小额尝试,切勿一次性投入过多。
3 Manual Relay
人工中继。
使用场景
处理非常庞大的上下文(如整个代码库或超长文档)时,直接调用 API 的 Token 消耗昂贵。启用“人工中继”模式后,RooCode 不直接调用配置好的模型 API,而是将生成的 Prompt (提示词) 或问题展示给你。你要手动将这些内容复制到你拥有高级会员权限的 AI 网页端(如 ChatGPT Plus)进行提问,获得答案后,再将答案粘贴回 RooCode。RooCode 会基于你粘贴回来的内容继续执行下一步的 Agent 任务。
优势
极大节省 API Token 费用,尤其适合处理超大上下文;可以充分利用你已有的网页端 AI 会员资格。
缺点
需要手动复制粘贴,较为繁琐。
需将问题粘贴到Web端AI:
4 社区活跃
RooCode开发者非常活跃,表明开发者在积极听取社区反馈并持续完善插件,更有希望带来更多实用的新功能。
5 总结
RooCode扮演着智能 Agent 的角色,擅长需求分析、任务规划、架构设计,并能通过灵活的模型配置和“人工中继”模式控制成本。
本文由博客一文多发平台 OpenWrite 发布!