我是比较爱用自底向上的自底向上方法不会计算多余情况, 也不用memo存储
不同路径(062)
class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        for (int i = 0; i < m;i++){
            dp[i][0] = 1;
        }
        for (int j = 0; j < n; j++){
            dp[0][j] = 1;
        }
        for (int i = 1; i < m; i++){
            for (int j = 1; j < n; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}
- 分析
 
对0行0列初始化,后进行合流
最小路径和(064)
class Solution {
    public int minPathSum(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m][n];
        dp[0][0] = grid[0][0];
        for (int i = 1; i < m; i++){
            dp[i][0] = dp[i-1][0] + grid[i][0];
        }
        for (int j = 1; j < n; j++){
            dp[0][j] = dp[0][j-1] + grid[0][j]; 
        }
        for (int i = 1; i < m; i++){
            for (int j = 1; j < n; j++){
                dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
            }
        }
        return dp[m-1][n-1];
    }
}
- 分析
 
同样是初始化, 再合流
根据dp数组的依赖关系, 可以进行空间优化
最长回文子串(005)
class Solution {
    public String longestPalindrome(String s) {
        String res = " ";
        for (int i = 0; i < s.length(); i++){
            String str1 = longestSubPalindrome(i, i, s);
            String str2 = longestSubPalindrome(i, i+1, s);
            res = res.length() > str1.length() ? res : str1;
            res = res.length() > str2.length() ? res : str2;
        }
        return res;
    }
    private String longestSubPalindrome(int lef, int rig, String s){
        while (0<=lef && rig < s.length() && s.charAt(lef) == s.charAt(rig)){
            lef--;
            rig++;
        }
        return s.substring(lef+1, rig);
    }
}
- 分析
 
想到扩散是比较自然的,时间复杂度也不高
最长公共子序列(1143)
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        char[] charArray1 = text1.toCharArray();
        char[] charArray2 = text2.toCharArray();
        int m = charArray1.length;
        int n = charArray2.length;
        int[][] dp = new int[m+1][n+1];
        for(int i = 1; i <= m; i++){
            for (int j = 1; j <= n; j++){
                if (charArray1[i-1] == charArray2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                else dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
                
            }
        }
        return dp[m][n];
    }
}
- 分析
 
可以看作有两个指针, 匹配的话两个指针一起右移, 不匹配移动其中一个指针找到新的匹配
编辑距离(072)
class Solution {
    public int minDistance(String word1, String word2) {
        char[] charArray1 = word1.toCharArray();
        char[] charArray2 = word2.toCharArray();
        int m = charArray1.length;
        int n = charArray2.length;
        int[][] dp = new int[m+1][n+1];
        for (int i = 0; i < m; i++){
            dp[i+1][0] = i+1;
        }
        for (int j = 0; j < n; j++){
            dp[0][j+1] = j+1;
        }
        for (int i = 1; i <= m; i++){
            for (int j = 1; j <= n ; j++){
                if (charArray1[i-1] == charArray2[j-1]){
                    dp[i][j] = dp[i-1][j-1];
                }
                else dp[i][j] = Math.min(dp[i-1][j-1] ,Math.min(dp[i-1][j], dp[i][j-1])) + 1;
            }
        }
        return dp[m][n];
    }
}
- 分析
 
跟上题差不多,不匹配时多了一个情况变为<移动A指针><移动B指针><移动双指针>
