pytorch的矩阵操作分类

PyTorch 的矩阵操作

注意:

  1. 无论是torch.f()还是tensor.f(),都是返回新的Tensor,不会修改原始的tensor

单个tensor

初始化

  • empty

    用于创建一个未初始化的张量,其值是随机的

    torch.randn的区别在于,torch.randn是从正态分布中采样的

    torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) → Tensor
    
    torch.empty((2,3), dtype=torch.int64)
    tensor([[ 9.4064e+13,  2.8000e+01,  9.3493e+13],
            [ 7.5751e+18,  7.1428e+18,  7.5955e+18]])
    
  • zeros

    torch.zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
    
    torch.zeros(2, 3)
    tensor([[ 0.,  0.,  0.],
            [ 0.,  0.,  0.]])
    
  • randn

    \(out_i \sim \mathcal{N}(0, 1)\),满足正态分布

    torch.randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False)
    
    torch.randn(2, 3)
    tensor([[ 1.5954,  2.8929, -1.0923],
            [ 1.1719, -0.4709, -0.1996]])
    
  • randint

    生成制定范围[low, high) 和形状size的tensor

    torch.randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
    
    torch.randint(3, 10, (2, 2))
    tensor([[4, 5],
            [6, 7]])
    
  • arange

    list(range())的原理相同

    torch.arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
    
    torch.arange(5)
    tensor([ 0,  1,  2,  3,  4])
    torch.arange(1, 4)
    tensor([ 1,  2,  3])
    torch.arange(1, 2.5, 0.5)
    tensor([ 1.0000,  1.5000,  2.0000])
    
  • range(deprecated)

    类似于list(range())的用法,但是,torch.range的返回的最后一个元素是可以为end的

    torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
    
    # 0.5 指的是每步的大小
    torch.range(1, 4, 0.5)
    tensor([ 1.0000,  1.5000,  2.0000,  2.5000,  3.0000,  3.5000,  4.0000])
    
  • linspace

    不同于torch.range,这里的step指的是有多少步,根据步数,计算每步的大小

    torch.linspace的第一个元素一定是start,最后一个元素一定是end

    torch.linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
    
    torch.linspace(start=-10, end=10, steps=5)
    tensor([-10.,  -5.,   0.,   5.,  10.])
    torch.linspace(start=-10, end=10, steps=1)
    tensor([-10.]
    
  • eye

    返回对角线矩阵

    torch.eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
    
    torch.eye(3)
    tensor([[ 1.,  0.,  0.],
            [ 0.,  1.,  0.],
            [ 0.,  0.,  1.]])
    
  • full

    把一个数字扩展到指定的形状上,是ones zeros的一般化

    torch.full((2,3), 0.0) = torch.zeros((2,3))

    torch.full((2,3), 1.0) = torch.ones((2,3))

    torch.full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
    
    torch.full((2, 3), 3.141592)
    tensor([[ 3.1416,  3.1416,  3.1416],
            [ 3.1416,  3.1416,  3.1416]])
    
  • zeros_like

    返回于input tensor形状相同的元素全是0的tensor

    torch.zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor
    
    input = torch.empty(2, 3)
    torch.zeros_like(input)
    tensor([[ 0.,  0.,  0.],
            [ 0.,  0.,  0.]])
    

改变形状

  • premute

    改变维度的顺序

    torch.permute(input, dims) -> Tensor
    
    x = torch.randn(2, 3, 5)
    x.size()
    torch.Size([2, 3, 5])
    torch.permute(x, (2, 0, 1)).size()
    torch.Size([5, 2, 3])
    
  • reshape

    改变tensor的形状,但是元素的数量和值不改变

    torch.reshape(input, shape) → Tensor
    
    a = torch.arange(4.)
    torch.reshape(a, (2, 2))
    tensor([[ 0.,  1.],
            [ 2.,  3.]])
    b = torch.tensor([[0, 1], [2, 3]])
    torch.reshape(b, (-1,))
    tensor([ 0,  1,  2,  3])
    
  • transpose

    将两个指定维度的位置进行替换

    torch.permute(x, (0,2,1)) = torch.transpose(x, 1, 2)

    torch.transpose(input, dim0, dim1) -> Tensor
    
    x = torch.randn(2, 3)
    tensor([[ 1.0028, -0.9893,  0.5809],
            [-0.1669,  0.7299,  0.4942]])
    torch.transpose(x, 0, 1)
    tensor([[ 1.0028, -0.1669],
            [-0.9893,  0.7299],
            [ 0.5809,  0.4942]])
    
  • view

    tensor.view 创建的张量 tensor_view 是原始张量 tensor 的一个视图(view),而不是一个新的张量。因此,tensor_view 不会单独存储梯度信息。梯度信息会直接存储在原始张量 tensor 中。

    Tensor.view而不是torch.view

    Tensor.view(*shape) → Tensor
    
    x = torch.randn(4, 4)
    x.size()
    torch.Size([4, 4])
    y = x.view(16)
    y.size()
    torch.Size([16])
    z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
    z.size()
    torch.Size([2, 8])
    

    b_view 只是b的一个不同形状的视图,后续使用b_view导致的属性的修改还是保存在b中

    a = torch.randn(1,6)
    b = torch.randn(3,2,requires_grad=True)
    b_view = b.view(6,1)
    loss = a@b_view
    loss.backward()
    
    b_view.grad
    空
    b.grad
    tensor([[-0.3020, -1.4392],
            [ 0.7194,  0.1363],
            [-1.3413, -0.2453]])
    

    此外,只有在内存中连续存储的tensor才可以使用view,否则使用reshape,reshape和view的性质一致

    其中,tensor的转置会导致tensor是不连续的

    tensor = torch.randn(2,3)
    >>> # 转置张量,使其变为非连续
    >>> tensor_transposed = tensor.transpose(0, 1)
    >>> print("Transposed tensor:")
    Transposed tensor:
    >>> print(tensor_transposed)
    tensor([[ 2.2194, -0.6988],
            [ 0.5496,  0.2167],
            [-0.2635, -2.5029]])
    >>> print("Is the transposed tensor contiguous?", tensor_transposed.is_contiguous())
    Is the transposed tensor contiguous? False
    
  • squeeze

    把大小是1的维度 remove掉

    When dim is given, a squeeze operation is done only in the given dimension(s). If input is of shape: (A×1×B)(A×1×B), squeeze(input, 0) leaves the tensor unchanged, but squeeze(input, 1) will squeeze the tensor to the shape (A×B)(A×B).

    torch.squeeze(input: Tensor, dim: Optional[Union[int, List[int]]]) → Tensor
    
    x = torch.zeros(2, 1, 2, 1, 2)
    x.size()
    torch.Size([2, 1, 2, 1, 2])
    y = torch.squeeze(x)
    y.size()
    torch.Size([2, 2, 2])
    y = torch.squeeze(x, 0)
    y.size()
    torch.Size([2, 1, 2, 1, 2])
    y = torch.squeeze(x, 1)
    y.size()
    torch.Size([2, 2, 1, 2])
    y = torch.squeeze(x, (1, 2, 3))
    torch.Size([2, 2, 2])
    
  • unsqueeze

    添加维度

    x = torch.randn(4)
    torch.unsqueeze(x, 0).size()
    torch.Size(1,4)
    torch.unsqueeze(x, 1).size()
    torch.Size(4,1)
    
  • size

    t.size() = t.shape. tuple(t.size())返回一个维度的元组

索引

待更新。。。

多个tensor之间

  • matmul

    torch.matmul(input, other, *, out=None) → Tensor
    
    # vector x vector
    tensor1 = torch.randn(3)
    tensor2 = torch.randn(3)
    torch.matmul(tensor1, tensor2).size()
    # matrix x vector
    tensor1 = torch.randn(3, 4)
    tensor2 = torch.randn(4)
    torch.matmul(tensor1, tensor2).size()
    # batched matrix x broadcasted vector
    tensor1 = torch.randn(10, 3, 4)
    tensor2 = torch.randn(4)
    torch.matmul(tensor1, tensor2).size()
    # batched matrix x batched matrix
    tensor1 = torch.randn(10, 3, 4)
    tensor2 = torch.randn(10, 4, 5)
    torch.matmul(tensor1, tensor2).size()
    # batched matrix x broadcasted matrix
    tensor1 = torch.randn(10, 3, 4)
    tensor2 = torch.randn(4, 5)
    torch.matmul(tensor1, tensor2).size()
    

    torch.mm 仅能支持两个2D矩阵tensor的乘法

  • stack

    堆叠,从而产生一个新的维度

    torch.stack(tensors, dim=0, *, out=None) → Tensor
    
    x = torch.randn(2,3)
    c = torch.stack((x,x), dim=0)
    # c.size() = torch.Size(2,2,3)
    
  • cat

    在一个维度上进行拼接

    torch.stack(tensors, dim=0, *, out=None) → Tensor
    
    x = torch.randn(2,3)
    c = torch.cat((x,x), dim=0)
    # c.size() = torch.Size(4, 3)
    c = torch.cat((x,x), dim=1)
    # c.size() = torch.Size(2, 6)
    
  • split

    根据指定维度,切分成指定大小的tuple(tensor)

    torch.split(tensor, split_size_or_sections, dim=0)
    
    a = torch.arange(10).reshape(5, 2)
    tensor([[0, 1],
            [2, 3],
            [4, 5],
            [6, 7],
            [8, 9]])
    torch.split(a, 2)
    (tensor([[0, 1],
             [2, 3]]),
     tensor([[4, 5],
             [6, 7]]),
     tensor([[8, 9]]))
    torch.split(a, [1, 4])
    (tensor([[0, 1]]),
     tensor([[2, 3],
             [4, 5],
             [6, 7],
             [8, 9]]))
    

参考:pytorch 官网API