PyTorch 的矩阵操作
注意:
- 无论是torch.f()还是tensor.f(),都是返回新的Tensor,不会修改原始的tensor
单个tensor
初始化
-
empty
用于创建一个未初始化的张量,其值是随机的
与
torch.randn
的区别在于,torch.randn
是从正态分布中采样的torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) → Tensor torch.empty((2,3), dtype=torch.int64) tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], [ 7.5751e+18, 7.1428e+18, 7.5955e+18]])
-
zeros
torch.zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) torch.zeros(2, 3) tensor([[ 0., 0., 0.], [ 0., 0., 0.]])
-
randn
\(out_i \sim \mathcal{N}(0, 1)\),满足正态分布
torch.randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]])
-
randint
生成制定范围[low, high) 和形状size的tensor
torch.randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]])
-
arange
和
list(range())
的原理相同torch.arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor torch.arange(5) tensor([ 0, 1, 2, 3, 4]) torch.arange(1, 4) tensor([ 1, 2, 3]) torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000])
-
range(deprecated)
类似于
list(range())
的用法,但是,torch.range的返回的最后一个元素是可以为end的torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) # 0.5 指的是每步的大小 torch.range(1, 4, 0.5) tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])
-
linspace
不同于
torch.range
,这里的step指的是有多少步,根据步数,计算每步的大小torch.linspace的第一个元素一定是start,最后一个元素一定是end
torch.linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) torch.linspace(start=-10, end=10, steps=1) tensor([-10.]
-
eye
返回对角线矩阵
torch.eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor torch.eye(3) tensor([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])
-
full
把一个数字扩展到指定的形状上,是ones zeros的一般化
torch.full((2,3), 0.0) = torch.zeros((2,3))
torch.full((2,3), 1.0) = torch.ones((2,3))
torch.full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor torch.full((2, 3), 3.141592) tensor([[ 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416]])
-
zeros_like
返回于input tensor形状相同的元素全是0的tensor
torch.zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor input = torch.empty(2, 3) torch.zeros_like(input) tensor([[ 0., 0., 0.], [ 0., 0., 0.]])
改变形状
-
premute
改变维度的顺序
torch.permute(input, dims) -> Tensor x = torch.randn(2, 3, 5) x.size() torch.Size([2, 3, 5]) torch.permute(x, (2, 0, 1)).size() torch.Size([5, 2, 3])
-
reshape
改变tensor的形状,但是元素的数量和值不改变
torch.reshape(input, shape) → Tensor a = torch.arange(4.) torch.reshape(a, (2, 2)) tensor([[ 0., 1.], [ 2., 3.]]) b = torch.tensor([[0, 1], [2, 3]]) torch.reshape(b, (-1,)) tensor([ 0, 1, 2, 3])
-
transpose
将两个指定维度的位置进行替换
torch.permute(x, (0,2,1)) = torch.transpose(x, 1, 2)
torch.transpose(input, dim0, dim1) -> Tensor x = torch.randn(2, 3) tensor([[ 1.0028, -0.9893, 0.5809], [-0.1669, 0.7299, 0.4942]]) torch.transpose(x, 0, 1) tensor([[ 1.0028, -0.1669], [-0.9893, 0.7299], [ 0.5809, 0.4942]])
-
view
tensor.view
创建的张量tensor_view
是原始张量tensor
的一个视图(view),而不是一个新的张量。因此,tensor_view
不会单独存储梯度信息。梯度信息会直接存储在原始张量tensor
中。Tensor.view而不是torch.view
Tensor.view(*shape) → Tensor x = torch.randn(4, 4) x.size() torch.Size([4, 4]) y = x.view(16) y.size() torch.Size([16]) z = x.view(-1, 8) # the size -1 is inferred from other dimensions z.size() torch.Size([2, 8])
b_view 只是b的一个不同形状的视图,后续使用b_view导致的属性的修改还是保存在b中
a = torch.randn(1,6) b = torch.randn(3,2,requires_grad=True) b_view = b.view(6,1) loss = a@b_view loss.backward() b_view.grad 空 b.grad tensor([[-0.3020, -1.4392], [ 0.7194, 0.1363], [-1.3413, -0.2453]])
此外,只有在内存中连续存储的tensor才可以使用view,否则使用reshape,reshape和view的性质一致
其中,tensor的转置会导致tensor是不连续的
tensor = torch.randn(2,3) >>> # 转置张量,使其变为非连续 >>> tensor_transposed = tensor.transpose(0, 1) >>> print("Transposed tensor:") Transposed tensor: >>> print(tensor_transposed) tensor([[ 2.2194, -0.6988], [ 0.5496, 0.2167], [-0.2635, -2.5029]]) >>> print("Is the transposed tensor contiguous?", tensor_transposed.is_contiguous()) Is the transposed tensor contiguous? False
-
squeeze
把大小是1的维度 remove掉
When
dim
is given, a squeeze operation is done only in the given dimension(s). If input is of shape: (A×1×B)(A×1×B),squeeze(input, 0)
leaves the tensor unchanged, butsqueeze(input, 1)
will squeeze the tensor to the shape (A×B)(A×B).torch.squeeze(input: Tensor, dim: Optional[Union[int, List[int]]]) → Tensor x = torch.zeros(2, 1, 2, 1, 2) x.size() torch.Size([2, 1, 2, 1, 2]) y = torch.squeeze(x) y.size() torch.Size([2, 2, 2]) y = torch.squeeze(x, 0) y.size() torch.Size([2, 1, 2, 1, 2]) y = torch.squeeze(x, 1) y.size() torch.Size([2, 2, 1, 2]) y = torch.squeeze(x, (1, 2, 3)) torch.Size([2, 2, 2])
-
unsqueeze
添加维度
x = torch.randn(4) torch.unsqueeze(x, 0).size() torch.Size(1,4) torch.unsqueeze(x, 1).size() torch.Size(4,1)
-
size
t.size() = t.shape
.tuple(t.size())
返回一个维度的元组
索引
待更新。。。
多个tensor之间
-
matmul
torch.matmul(input, other, *, out=None) → Tensor # vector x vector tensor1 = torch.randn(3) tensor2 = torch.randn(3) torch.matmul(tensor1, tensor2).size() # matrix x vector tensor1 = torch.randn(3, 4) tensor2 = torch.randn(4) torch.matmul(tensor1, tensor2).size() # batched matrix x broadcasted vector tensor1 = torch.randn(10, 3, 4) tensor2 = torch.randn(4) torch.matmul(tensor1, tensor2).size() # batched matrix x batched matrix tensor1 = torch.randn(10, 3, 4) tensor2 = torch.randn(10, 4, 5) torch.matmul(tensor1, tensor2).size() # batched matrix x broadcasted matrix tensor1 = torch.randn(10, 3, 4) tensor2 = torch.randn(4, 5) torch.matmul(tensor1, tensor2).size()
torch.mm
仅能支持两个2D矩阵tensor的乘法 -
stack
堆叠,从而产生一个新的维度
torch.stack(tensors, dim=0, *, out=None) → Tensor x = torch.randn(2,3) c = torch.stack((x,x), dim=0) # c.size() = torch.Size(2,2,3)
-
cat
在一个维度上进行拼接
torch.stack(tensors, dim=0, *, out=None) → Tensor x = torch.randn(2,3) c = torch.cat((x,x), dim=0) # c.size() = torch.Size(4, 3) c = torch.cat((x,x), dim=1) # c.size() = torch.Size(2, 6)
-
split
根据指定维度,切分成指定大小的tuple(tensor)
torch.split(tensor, split_size_or_sections, dim=0) a = torch.arange(10).reshape(5, 2) tensor([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) torch.split(a, 2) (tensor([[0, 1], [2, 3]]), tensor([[4, 5], [6, 7]]), tensor([[8, 9]])) torch.split(a, [1, 4]) (tensor([[0, 1]]), tensor([[2, 3], [4, 5], [6, 7], [8, 9]]))