
9. LangChain4j + 整合 Spring Boot
@
目录
LangChain4j 整合 SpringBoot 官方文档:https://docs.langchain4j.dev/tutorials/spring-boot-integration/
浅谈—下:LangChain4j twolevels of abstraction
低阶 APi 和 高阶 API
Spring Boot整合底阶API所需POM:
<dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-open-ai-spring-boot-starter</artifactId> <version>1.2.0-beta8</version> </dependency>
langchain4j.open-ai.chat-model.api-key=${OPENAI_API_KEY} langchain4j.open-ai.chat-model.model-name=gpt-4o langchain4j.open-ai.chat-model.log-requests=true langchain4j.open-ai.chat-model.log-responses=true ...
Spring Boot整合高阶API所需POM:
截至目前,存在两种整合 Spring Boot 的方式:
LangChain4J 原生整合:
LangChain4J + Spring Boot 整合:
小总结:
LangChain4j + 整合 Spring Boot 实操
- 创建对应项目的 module 模块内容:
- 导入相关的 pom.xml 的依赖,这里我们采用流式输出的方式,导入 整合 Spring Boot ,`langchain4j-open-ai-spring-boot-starter,langchain4j-spring-boot-starter 这里我们不指定版本,而是通过继承的 pom.xml 当中获取。
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!--1 LangChain4j 整合boot底层支持--> <!-- https://docs.langchain4j.dev/tutorials/spring-boot-integration --> <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-open-ai-spring-boot-starter</artifactId> </dependency> <!--2 LangChain4j 整合boot高阶支持--> <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-spring-boot-starter</artifactId> </dependency>
- 设置 applcation.yaml / properties 配置文件,其中指明我们的输出响应的编码格式,因为如果不指定的话,存在返回的中文,就是乱码了。
server.port=9008 spring.application.name=langchain4j-08boot-integration # 设置响应的字符编码,避免流式返回输出乱码 server.servlet.encoding.charset=utf-8 server.servlet.encoding.enabled=true server.servlet.encoding.force=true # https://docs.langchain4j.dev/tutorials/spring-boot-integration #langchain4j.open-ai.chat-model.api-key=${aliQwen-api} #langchain4j.open-ai.chat-model.model-name=qwen-plus #langchain4j.open-ai.chat-model.base-url=https://dashscope.aliyuncs.com/compatible-mode/v1 # 大模型调用不可以明文配置,你如何解决该问题 # 1 yml: ${aliQwen-api},从环境变量读取 # 2 config配置类: System.getenv("aliQwen-api")从环境变量读取
- 编写大模型三件套(大模型 key,大模型 name,大模型 url) 三件套的大模型配置类。
这里我们测试操作两个大模型:DeepSeek,通义千问。
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek; import dev.langchain4j.model.chat.ChatModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.service.AiServices; import org.springframework.beans.factory.annotation.Qualifier; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; /** * @Description: 知识出处 https://docs.langchain4j.dev/get-started */ @Configuration public class LLMConfig { @Bean(name = "qwen") public ChatModel chatModelQwen() { return OpenAiChatModel.builder() .apiKey(System.getenv("aliQwen_api")) .modelName("qwen-plus") .baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1") .build(); } /** * @Description: 知识出处,https://api-docs.deepseek.com/zh-cn/ */ @Bean(name = "deepseek") public ChatModel chatModelDeepSeek() { return OpenAiChatModel.builder() .apiKey(System.getenv("deepseek_api")) .modelName("deepseek-chat") //.modelName("deepseek-reasoner") .baseUrl("https://api.deepseek.com/v1") .build(); } }
- 编写我们操作两个大模型的将接口类,同时通过在我们的配置类上 + 通过 @AiService 进行一个对接口的实现。
@AiService 注解的源码如下:
// // Source code recreated from a .class file by IntelliJ IDEA // (powered by FernFlower decompiler) // package dev.langchain4j.service.spring; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; import org.springframework.stereotype.Service; @Service @Target({ElementType.TYPE}) @Retention(RetentionPolicy.RUNTIME) public @interface AiService { AiServiceWiringMode wiringMode() default AiServiceWiringMode.AUTOMATIC; String chatModel() default ""; String streamingChatModel() default ""; String chatMemory() default ""; String chatMemoryProvider() default ""; String contentRetriever() default ""; String retrievalAugmentor() default ""; String moderationModel() default ""; String[] tools() default {}; }
package com.rainbowsea.langchain4jbootintegration.service; import dev.langchain4j.service.spring.AiService; import static dev.langchain4j.service.spring.AiServiceWiringMode.EXPLICIT; /** */ @AiService(wiringMode = EXPLICIT, chatModel = "qwen") public interface ChatAssistantQwen { String chat(String prompt); }
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek; import dev.langchain4j.model.chat.ChatModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.service.AiServices; import org.springframework.beans.factory.annotation.Qualifier; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; /** * @Description: 知识出处 https://docs.langchain4j.dev/get-started */ @Configuration public class LLMConfig { @Bean(name = "qwen") public ChatModel chatModelQwen() { return OpenAiChatModel.builder() .apiKey(System.getenv("aliQwen_api")) .modelName("qwen-plus") .baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1") .build(); } // 你使用第2种类,高阶API AiService @Bean(name = "qwenAssistant") public ChatAssistantQwen chatAssistantQwen(@Qualifier("qwen") ChatModel chatModelQwen) { return AiServices.create(ChatAssistantQwen.class, chatModelQwen); } }
同理我们添加上 DeepSeek 操作的接口类,以及对应大模型的实现类
package com.rainbowsea.langchain4jbootintegration.service; import dev.langchain4j.service.spring.AiService; import static dev.langchain4j.service.spring.AiServiceWiringMode.EXPLICIT; /** */ @AiService(wiringMode = EXPLICIT, chatModel = "deepseek") public interface ChatAssistantDeepSeek { String chat(String prompt); }
package com.rainbowsea.langchain4jbootintegration.config; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek; import dev.langchain4j.model.chat.ChatModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.service.AiServices; import org.springframework.beans.factory.annotation.Qualifier; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; /** * @Description: 知识出处 https://docs.langchain4j.dev/get-started */ @Configuration public class LLMConfig { /** * @Description: 知识出处,https://api-docs.deepseek.com/zh-cn/ */ @Bean(name = "deepseek") public ChatModel chatModelDeepSeek() { return OpenAiChatModel.builder() .apiKey(System.getenv("deepseek_api")) .modelName("deepseek-chat") //.modelName("deepseek-reasoner") .baseUrl("https://api.deepseek.com/v1") .build(); } @Bean(name = "deepseekAssistant") public ChatAssistantDeepSeek chatAssistantDeepSeek(@Qualifier("deepseek") ChatModel chatModelDeepSeek) { return AiServices.create(ChatAssistantDeepSeek.class, chatModelDeepSeek); } }
DeepSeek + 通义千问
package com.rainbowsea.langchain4jbootintegration.config; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek; import dev.langchain4j.model.chat.ChatModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.service.AiServices; import org.springframework.beans.factory.annotation.Qualifier; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; /** * @Description: 知识出处 https://docs.langchain4j.dev/get-started */ @Configuration public class LLMConfig { @Bean(name = "qwen") public ChatModel chatModelQwen() { return OpenAiChatModel.builder() .apiKey(System.getenv("aliQwen_api")) .modelName("qwen-plus") .baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1") .build(); } // 你使用第2种类,高阶API AiService @Bean(name = "qwenAssistant") public ChatAssistantQwen chatAssistantQwen(@Qualifier("qwen") ChatModel chatModelQwen) { return AiServices.create(ChatAssistantQwen.class, chatModelQwen); } /** * @Description: 知识出处,https://api-docs.deepseek.com/zh-cn/ */ @Bean(name = "deepseek") public ChatModel chatModelDeepSeek() { return OpenAiChatModel.builder() .apiKey(System.getenv("deepseek_api")) .modelName("deepseek-chat") //.modelName("deepseek-reasoner") .baseUrl("https://api.deepseek.com/v1") .build(); } @Bean(name = "deepseekAssistant") public ChatAssistantDeepSeek chatAssistantDeepSeek(@Qualifier("deepseek") ChatModel chatModelDeepSeek) { return AiServices.create(ChatAssistantDeepSeek.class, chatModelDeepSeek); } }
- 编写操作两大,大模型的 Controller 类,使用我们自己编写的接口类操作大模型。
操作访问通义千问。
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen; import jakarta.annotation.Resource; import lombok.extern.slf4j.Slf4j; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; /** * @Description: https://docs.langchain4j.dev/tutorials/spring-boot-integration */ @RestController @Slf4j public class DeclarativeAIServiceController { @Resource(name = "qwenAssistant") private ChatAssistantQwen chatAssistantQwen; // http://localhost:9008/chatapi/highapi @GetMapping(value = "/chatapi/highapi") public String highApi(@RequestParam(value = "prompt", defaultValue = "你是谁") String prompt) { return chatAssistantQwen.chat(prompt); } }
操作访问 DeepSeek
package com.rainbowsea.langchain4jbootintegration.controller; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek; import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen; import jakarta.annotation.Resource; import lombok.extern.slf4j.Slf4j; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; /** * @Description: https://docs.langchain4j.dev/tutorials/spring-boot-integration */ @RestController @Slf4j public class DeclarativeAIServiceController { @Resource(name = "deepseekAssistant") private ChatAssistantDeepSeek chatAssistantDeepSeek; // http://localhost:9008/chatapi/highapi02 @GetMapping(value = "/chatapi/highapi02") public String highApi02(@RequestParam(value = "prompt", defaultValue = "你是谁") String prompt) { return chatAssistantDeepSeek.chat(prompt); } }
最后:
“在这个最后的篇章中,我要表达我对每一位读者的感激之情。你们的关注和回复是我创作的动力源泉,我从你们身上吸取了无尽的灵感与勇气。我会将你们的鼓励留在心底,继续在其他的领域奋斗。感谢你们,我们总会在某个时刻再次相遇。”
![]()